Assessment of short-term aquifer thermal energy storage for demand-side management perspectives: Experimental and numerical developments
Guillaume De Schepper,
Claire Paulus,
Pierre-Yves Bolly,
Thomas Hermans,
Nolwenn Lesparre and
Tanguy Robert
Applied Energy, 2019, vol. 242, issue C, 534-546
Abstract:
In the context of demand-side management and geothermal energy production, our proposal is to store thermal energy in shallow alluvial aquifers at shorter frequencies than classical seasonal aquifer thermal energy storage. We first conducted a one-week experiment in a shallow alluvial aquifer, which is characterized by a slow ambient groundwater flow, to assess its potential for thermal energy storage and recovery. This experiment has shown that up to 90% of the stored thermal energy can be recovered and would therefore suggest that aquifer thermal energy storage could be considered for demand-side management applications. We then conceptualized, developed, and calibrated a deterministic 3D groundwater flow and heat transport numerical model representing our study site, and we simulated 77 different scenarios to further assess this potential. This has allowed us to demonstrate that low-temperature aquifer thermal energy storage (temperature differences of −4 K for precooling and 3, 6, and 11 K for preheating) is efficient with energy recovery rates ranging from 78 to 87%, in a single aquifer thermal energy storage cycle. High-temperature aquifer thermal energy storage (temperature differences between 35 and 65 K) presents lower energy recovery rates, from 53 to 71%, with all other parameters remaining equals. Energy recovery rates decrease with increasing storage duration and this decrease is faster for higher temperatures. Retrieving directly useful heat (without upgrading with a groundwater heat pump) using only a single storage and recovery cycle appears to be complicated. Nevertheless, there is room for aquifer thermal energy storage optimization in space and time with regard to improving both the energy recovery rates and the recovered absolute temperatures.
Keywords: Aquifer thermal energy storage; Demand-side management; Energy efficiency; Hydrogeological modeling; Geothermics; Geophysics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919305124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:242:y:2019:i:c:p:534-546
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.03.103
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().