Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics
Katrin Seddig,
Patrick Jochem and
Wolf Fichtner
Applied Energy, 2019, vol. 242, issue C, 769-781
Abstract:
Electric vehicles are one promising technology towards an improved sustainable transportation sector, especially when charged with electricity from renewable energy sources. However, the fluctuating generation of renewable energy resources, as well as the changing driving patterns of electric vehicles, have the offset of an uncertain nature. This paper compares three approaches (heuristic, optimization, and stochastic programming) to schedule the charging process of three different electric vehicles fleets (commuters, opportunity, and commercial fleets) at a common charging infrastructure under uncertainty. In the setting of a car park case study, several technical restrictions are taken into consideration when the load shift potential of the electric vehicles fleets are evaluated in order to minimize charging costs or to maximize the utilization of generated electricity by local photovoltaic. The two-stage Stochastic Mixed Integer Optimization Problem is solved by a Latin Hypercube based Sample Average Approximation method. Uncertainties of electricity generation by the photovoltaic system are considered by three different forecasting options and the mobility characteristics of the three electric vehicles fleets are modeled with a non-parametric probability density function (Kernel Density Estimation). The differences in charging costs and utilization of electricity from photovoltaic when applying the three approaches are identified and discussed. The numerical results show the feasibility to charge different electric vehicle fleets in a car park according to different signals and taking thereby technical restrictions as well as uncertainties into consideration. An operator for facilitation of the charging control is needed to enable the load flexibilities of each electric vehicle fleet.
Keywords: Electric vehicle fleets; Stochastic programming; Uncertainty modeling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919304301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:242:y:2019:i:c:p:769-781
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.03.036
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().