EconPapers    
Economics at your fingertips  
 

Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction

Donghai Xu, Shuwei Guo, Liang Liu, Guike Lin, Zhiqiang Wu, Yang Guo and Shuzhong Wang

Applied Energy, 2019, vol. 243, issue C, 165-174

Abstract: The hydrothermal liquefaction (HTL) of microalgae produces water-soluble biocrude (WSB) and water-insoluble biocrude (WISB) simultaneously. The effects of heterogeneous catalysts (i.e. Pt/C, Ru/C, and Pt/C + Ru/C) on the properties of the two types of biocrudes derived from Chlorella HTL were explored for the first time. The results show that the addition of catalyst (Pt/C, Ru/C, or Pt/C + Ru/C) and/or the increase of residence time (from 10 to 30 min) could decrease the WSB fraction in total biocrude (WSB + WISB) mainly due to the improvement of the WISB yield. The catalytic effects on the WISB yield primarily occurred at the low algae loading (i.e., 1:10 of algae/water) condition, and there was a certain synergetic catalytic effect between Pt/C and Ru/C at this condition. The catalytic effect of Pt/C on the yields of WISB and total biocrude reduced as residence time increased. At the HTL conditions of 350 °C, 0.3 MPa H2, and 1:5 of algae/water for 30 min, Pt/C and Ru/C separately led to WSB and WISB with the highest C (63.57 and 74.16 wt%), H (7.34 and 8.44 wt%) contents and the lowest N (12.19 and 7.06 wt%), O (14.06 and 9.15 wt%) contents, and the highest HHVs (29.73 and 35.60 MJ/kg). The WISB produced with Pt/C mainly consisted of amides, hydrocarbons, organic acids and phenols. Pt/C could promote the cracking of high-molecular-weight compounds in WSB to form more low-boiling-point compounds.

Keywords: Hydrothermal liquefaction; Microalgae; Heterogeneous catalyst; Water-soluble biocrude; Water-insoluble biocrude (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919305963
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:243:y:2019:i:c:p:165-174

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.03.180

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:243:y:2019:i:c:p:165-174