EconPapers    
Economics at your fingertips  
 

Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway

Wonseop Hwang, Kyung-Bum Kim, Jae Yong Cho, Chan Ho Yang, Jung Hun Kim, Gyeong Ju Song, Yewon Song, Deok Hwan Jeon, Jung Hwan Ahn, Seong Do Hong, Jihoon Kim, Tae Hee Lee, Ji Young Choi, Haimoon Cheong and Tae Hyun Sung

Applied Energy, 2019, vol. 243, issue C, 313-320

Abstract: Piezoelectric energy harvesting technology can be used for a wide range of purposes through the design of road energy harvesting devices. For the roadway piezoelectric energy harvester (RPEH) developed here, a piezoelectric energy harvester (PEH) is fixed at both ends to increase the tolerable load and a module durable against harsh highway environments were developed using aluminum plates, steel plates, and polypropylene bars. A maximum voltage of 66 V, maximum current of 30.37 mA and maximum output power of 830 mW were measured with 2 mm of displacement at 15 Hz using the RPEH (50 cm × 20 cm) with 80 PEH units connected in parallel. On an actual high-speed road, measurements from a medium-sized vehicle which passes the RPEH at a speed of 90 km/h record an output voltage of 46.52 Vmax, output current of 93.04 mAmax, and power of 4.3 Wmax (power density: 43.0 W/m2) at a load resistance level of 0.5 kΩ. In an actual roadway environment, the electrical energy generated by the RPEH is sufficient to operate a temperature sensor and to transmit data wirelessly.

Keywords: Road-compatible device; Piezoelectric energy harvester; Wireless sensor network; Self-generated device; Temperature monitoring (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919305306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:243:y:2019:i:c:p:313-320

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.03.122

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:243:y:2019:i:c:p:313-320