EconPapers    
Economics at your fingertips  
 

Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2

N. Déparrois, P. Singh, K.G. Burra and A.K. Gupta

Applied Energy, 2019, vol. 246, issue C, 10 pages

Abstract: Co-pyrolysis and CO2 co-gasification of paper and polystyrene blends in different mixture ratios were studied at 1173 K using a laboratory scale tube reactor and thermogravimetric analysis. The chemical composition and yield of the syngas produced was analyzed by a micro gas chromatograph to understand the influence of mixture components. Co-pyrolysis positively impacted the syngas yield exhibiting a synergistic influence on cracking reactions leading to increased gaseous yield having almost double the amounts of hydrogen yield. Co-gasification using CO2 increased the total gas yield with enhanced synergistic conversion. This effect provided a non-linear impact on the combustible gases in the gaseous yields when compared to the separate gasification of these feedstocks. The synergistic enhancement of co-pyrolysis conversion in paper-polystyrene led to lower char present for CO2 to react during CO2 co-gasification that lead to lower CO during the gasification of this blended char residue. The mixtures of paper with polystyrene provided increased product gas yields and enhanced conversion with an increase in polystyrene content. The results showed the effectiveness of producing high energy density syngas from co-gasification which can alleviate material handling issues present in segregation of waste, such as plastics and biomass providing uniform valuable product from diverse waste feedstocks with minimal need for classification.

Keywords: Paper waste; Polystyrene; Synergistic effects; Co-pyrolysis; CO2 Co-gasification; Waste-to-energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919306397
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:246:y:2019:i:c:p:1-10

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.013

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:246:y:2019:i:c:p:1-10