The environment and energy consumption of a subway tunnel by the influence of piston wind
Minzhang Liu,
Chunguang Zhu,
Huan Zhang,
Wandong Zheng,
Shijun You,
Pietro Elia Campana and
Jinyue Yan
Applied Energy, 2019, vol. 246, issue C, 23 pages
Abstract:
With the flourishing development of the subway construction, it becomes increasingly urgent to improve the subway tunnel environment and reduce the energy consumption of the tunnel ventilation system. The tunnel environment is significantly affected by the piston wind, which is influenced by the train speed. In this paper, a three-dimensional computational model of a subway tunnel is developed and validated through experiments. The model is used to study the carbon dioxide concentration and thermal environment of the subway tunnel. The optimal train speed is proposed with the aim to minimize the volume of mechanical supply air and to optimize the carbon dioxide concentration and thermal environment of the tunnel. In parallel with the considerations of tunnel environment, the subways in 25 cities of China are analyzed to study the energy conservation of the tunnel ventilation system by making full use of piston wind. The results indicate that the optimal train speed is 30 m/s based on the carbon dioxide concentration and thermal environment. The effective utilization of the piston wind can reduce 13%∼32% of the energy consumption for tunnel ventilation. The calculation method of the optimal train speed developed in this paper is also applicable to ordinary railway tunnels and high-speed railway tunnels.
Keywords: Energy conservation; Energy performance; Carbon dioxide environment; Thermal environment; Piston wind; Dynamic mesh (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919306579
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:246:y:2019:i:c:p:11-23
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.04.026
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().