EconPapers    
Economics at your fingertips  
 

Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database

Xuning Feng, Siqi Zheng, Dongsheng Ren, Xiangming He, Li Wang, Hao Cui, Xiang Liu, Changyong Jin, Fangshu Zhang, Chengshan Xu, Hungjen Hsu, Shang Gao, Tianyu Chen, Yalun Li, Tianze Wang, Hao Wang, Maogang Li and Minggao Ouyang

Applied Energy, 2019, vol. 246, issue C, 53-64

Abstract: The cause of the thermal runaway problem in lithium-ion batteries problem is still unclear. This bottle neck has prevented increases in the energy density of lithium-ion batteries, of which the technology may stagnate for many years. The diversity of cell chemistries makes this problem more difficult to analyze. This paper reports work conducted by Tsinghua University and its collaborators into the establishment of a thermal analysis database. The database contains comparable data for different kinds of cells using accelerating rate calorimetry and differential scanning calorimetry. Three characteristic temperatures are summarized based on the common features of the cells in the database. In attempting to explain the mechanisms that are responsible for the characteristic temperature phenomena, we have gained new insight into the thermal runaway mechanisms of lithium-ion batteries. The results of specially designed tests show that the major heat source during thermal runaway for cells with Li(NixCoyMnz)O2 cathode and carbon-based anode is the redox reaction between the cathode and anode at high temperature. In contrast to what is commonly thought, internal short circuits are responsible for very little of the total heat generated during thermal runaway, although they contribute to triggering the redox reactions after the separator collapses. The characteristic temperatures provide comparable parameters that are useful in judging the safety of a newly designed battery cell. Moreover, the novel interpretation of the thermal runaway mechanism provide guidance for the safety modelling and design of lithium-ion batteries.

Keywords: Energy storage; Electric vehicles; Lithium-ion battery; Battery safety; Thermal runaway; Thermal analysis; Internal short circuit (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919306348
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:246:y:2019:i:c:p:53-64

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.009

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:246:y:2019:i:c:p:53-64