EconPapers    
Economics at your fingertips  
 

A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany

Markus Reuß, Thomas Grube, Martin Robinius and Detlef Stolten

Applied Energy, 2019, vol. 247, issue C, 438-453

Abstract: Hydrogen could play a key role in future energy systems by enabling the storage of excess electricity from renewable power sources, like solar and wind, and fueling emission-free fuel cell electric vehicles. Nevertheless, the temporal and spatial gap between the fluctuating production in electrolysis plants and the demand at fueling stations necessitates the construction of infrastructures. Different technologies are available for storing and transporting hydrogen in its gaseous or liquid states, or even via liquid organic hydrogen carriers. To select and compare these different infrastructure options on a nationwide scale in Germany for an energy system 2050, we carried out an infrastructure assessment with spatial resolution to analyze the resulting costs and CO2 emissions, as well as the primary energy demand. To do so, methods for designing a spatially-resolved infrastructure are presented. In particular, the setup of a transmission pipeline with gaseous trailer distribution has not been well represented and investigated in the literature so far. The results show that salt caverns, as well as transmission pipelines, are key technologies for future hydrogen infrastructure systems. The distribution should be handled for low penetration of fuel cell vehicles rates with gaseous compressed trailers and replaced by distribution pipelines in areas with high fueling station densities. This ensures the cost-effective supply during the transition to higher fuel cell vehicle fleets.

Keywords: Renewable energy; Hydrogen mobility; Hydrogen infrastructure; Hydrogen supply chain; Spatial infrastructure design; Liquid organic hydrogen carriers (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (55)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919307111
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:247:y:2019:i:c:p:438-453

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.064

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:438-453