A worldwide cost-based design and optimization of tilted bifacial solar farms
M. Tahir Patel,
M. Ryyan Khan,
Xingshu Sun and
Muhammad A. Alam
Applied Energy, 2019, vol. 247, issue C, 467-479
Abstract:
The steady decrease in the levelized cost of solar energy (LCOE) has made it increasingly cost-competitive against fossil fuels. The cost reduction is supported by a combination of material, device, and system innovations. To this end, bifacial solar farms are expected to decrease LCOE further by increasing the energy yield; but given the rapid pace of design/manufacturing innovations, a cost-inclusive optimization of bifacial PV systems at the farm-level (including land costs) has not been reported. In our worldwide study, we use a fundamentally new approach to decouple energy yield from cost considerations by parameterizing the LCOE formula in terms of “land-related cost” and “module-related cost” to show that an interplay of these parameters defines the optimum design of bifacial farms. For ground-mounted solar panels, we observe that the panels must be oriented horizontally and packed densely for locations with high “land-related cost”, whereas the panels should be optimally tilted for places with high “module-related cost”. For systems with relatively high “module-related costs” and for locations with |latitude| > 30°, the bifacial modules must be tilted ∼10°–15° higher and will reduce LCOE by 2–6% compared to their monofacial counterparts. The results in this paper will guide the deployment of LCOE-minimized ground-mounted tilted bifacial farms around the world.
Keywords: Solar energy; Levelized cost of energy (LCOE); Photovoltaics; Bifacial Solar farms (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919305604
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:247:y:2019:i:c:p:467-479
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.03.150
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().