EconPapers    
Economics at your fingertips  
 

Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage

Qianmei Fu, Jing Ding, Jiewei Lao, Weilong Wang and Jianfeng Lu

Applied Energy, 2019, vol. 247, issue C, 594-604

Abstract: Molten salt and supercritical carbon dioxide (S-CO2) are promising heat transfer fluids, but heat exchanger between molten salt and S-CO2 is seldom reported. By comprehensively considering low heat transfer coefficient of S-CO2 and high pressure loss of molten salt, printed circuit heat exchanger (PCHE) with S-CO2 airfoil fin passage and molten salt straight passage is first proposed and simulated in this paper. Because of fin, flow boundary of S-CO2 is periodically broken, and there are wakes and vortices in downstream region of fin. Periodical fins dominate flow and heat transfer process, and the pressure of S-CO2 periodically drops with sharp pressure loss in fin region for large flow resistance, while buoyancy force and turbulent kinetic energy have little effect on heat transfer. Heat transfer coefficients of molten salt and S-CO2 both periodically change along the flow direction, and they have similar tendency in different regions. Heat transfer coefficient in head region of fin is highest, and that in tail region of fin is lowest for wakes. Heat flow in top and bottom surfaces determine heat transfer of the system, and the region near fin head has high heat transfer coefficient, while the region near fin tail region is lower. Compared with parallel arrangement, pressure and temperature in staggered one has shorter period and smaller fluctuation, and overall heat transfer coefficient and pressure loss will a little lower.

Keywords: Printed circuit heat exchanger; Molten salt; Supercritical carbon dioxide; Airfoil fin; Parallel and staggered arrangement (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919306956
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:247:y:2019:i:c:p:594-604

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:594-604