EconPapers    
Economics at your fingertips  
 

An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application

Jiangong Zhu, Michael Knapp, Mariyam Susana Dewi Darma, Qiaohua Fang, Xueyuan Wang, Haifeng Dai, Xuezhe Wei and Helmut Ehrenberg

Applied Energy, 2019, vol. 248, issue C, 149-161

Abstract: An improved electro-thermal model is proposed considering the dependency of parameters not only on temperature and SoC (state of charge), but also on current rate. All the impedance parameters involved in the model are extracted from the direct current internal resistance (DCIR) tests, in which more than four hundred data sets are obtained in order to investigate the dependency of parameters on temperature, SoC, and current comprehensively. All dependency relationships are formulated by a semi-empirical approach based on the derivation of Butler-Volmer equation and Arrhenius empirical equation with other mathematical analysis. Verification results show that the improved model complemented by current dependent parameters can provide good prediction both in voltage and temperature responses for wide ranges of applied current rates and temperatures. Furthermore, in order to extend the engineering application of the proposed model, a nested loop program invoking the improved electro-thermal model is presented to predict the power performance of the battery. The effects of temperature and SoC on the available maximum cell output power are illustrated with a series of simulated contours.

Keywords: Lithium-ion battery; Electro-thermal model; Low temperature; Current dependency; Electric vehicles (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919307093
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:248:y:2019:i:c:p:149-161

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.066

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:248:y:2019:i:c:p:149-161