EconPapers    
Economics at your fingertips  
 

Application of information gap decision theory in practical energy problems: A comprehensive review

M. Majidi, B. Mohammadi-Ivatloo and A. Soroudi

Applied Energy, 2019, vol. 249, issue C, 157-165

Abstract: The uncertainty quantification and risk modeling are hot topics in operation and planning of energy systems. The system operators and planners are decision makers that need to handle the uncertainty of input data of their models. As an example, energy consumption has always been a critical problem for operators since the forecasted values, and the actual consumption is never expected to be the same. The penetration of renewable energy resources is continuously increasing in recent and upcoming years. These technologies are not dispatch-able and are highly dependent on natural resources. This would make real-time energy balancing more complicated. Another source of uncertainty is related to energy market prices which are determined by the market participants’ behaviors. To consider these issues, uncertainty modeling should be performed. Various approaches have been previously utilized to model the uncertainty of these parameters such as probabilistic approaches, possibilistic approaches, hybrid possibilistic-probabilistic approach, information gap decision theory, robust and interval optimization techniques. This paper reviews the research works that used information gap decision theory for uncertainty modeling in energy and power systems.

Keywords: Uncertainty; Uncertain parameters; Information gap decision theory; Robustness function; Opportunity function; Energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308037
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:249:y:2019:i:c:p:157-165

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.144

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:249:y:2019:i:c:p:157-165