Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines
Xiaoya Li,
Hua Tian,
Gequn Shu,
Mingru Zhao,
Christos N. Markides and
Chen Hu
Applied Energy, 2019, vol. 250, issue C, 1599 pages
Abstract:
Carbon dioxide transcritical power cycle (CTPC) systems are considered a new and particularly interesting technology for waste-heat recovery. In heavy-duty truck engine applications, challenges arise from the highly transient nature of the available heat sources. This paper presents an integrated model of CTPC systems recovering heat from a truck diesel engine, developed in GT-SUITE software and calibrated against experimental data, considers the likely fuel consumption improvements and identifies directions for further improvement. The transient performance of four different CTPC systems is predicted over a heavy-heavy duty driving cycle with a control structure comprising a mode switch module and two PID controllers implemented to realize stable, safe and optimal operation. Three operating modes are defined: startup mode, power mode, and stop mode. The results demonstrate that CTPC systems are robust and able to operate safely even when the heat sources are highly transient, indicating a promising potential for the deployment of this technology in such applications. Furthermore, a system layout with both a preheater and a recuperator appears as the most promising, allowing a 2.3% improvement in brake thermal efficiency over the whole driving cycle by utilizing 48.9% of the exhaust and 72.8% of the coolant energy, even when the pump and turbine efficiencies are as low as 50%. Finally, factor analysis suggests that important directions aimed at improving the performance and facilitating CTPC system integration with vehicle engines are: (1) ensuring long-duration operation in power mode, e.g., by employment in long-haul trucks; and (2) enhancing pump and turbine performance.
Keywords: Carbon dioxide transcritical power cycle (CTPC); Driving cycle; Heavy-duty truck engine; Integrated simulation; Control structure; Waste-heat recovery (WHR) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191930933X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:1581-1599
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.082
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().