Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5
Young-Kwon Park,
Jaehun Jung,
Sumin Ryu,
Hyung Won Lee,
Muhammad Zain Siddiqui,
Jungho Jae,
Atsushi Watanabe and
Young-Min Kim
Applied Energy, 2019, vol. 250, issue C, 1706-1718
Abstract:
This study examined the catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over basic calcium oxide and acid zeolites, such as HY (SiO2/Al2O3: 30), Hβ (25), HZSM-5 (23), to maximize the yields of aromatics using thermogravimetric analysis and tandem μ-reactor-gas chromatography/mass spectrometry. The maximum decomposition temperature of polyethylene terephthalate on the catalytic thermogravimetric analysis over HZSM-5 (452 °C) was reduced by co-feeding with yellow poplar wood to 444 °C because of its catalytic property and the effective interaction between the catalytic co-pyrolysis intermediates of yellow poplar wood and polyethylene terephthalate. Non-catalytic co-pyrolysis produced smaller amounts of large molecular polyethylene terephthalate pyrolyzates because of the more effective secondary cracking and deoxygenation. Calcium oxide was effective in the deacidification and acid zeolites were efficient in aromatics production during the catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate. Among the acid zeolites, HZSM-5 showed the highest efficiency on benzene, toluene, ethylbenzene, and xylenes (BTEXs) production, followed by Hβ and HY because of its strong acidity and proper pore size. The experimental MS intensities of BTEXs obtained from the catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over HZSM-5 (1083 × 106) were larger than their theoretical value (998 × 106). Compared to the single stage catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over ex-situ HZSM-5, the two-stage catalytic co-pyrolysis over in-situ calcium oxide and ex-situ HZSM-5 produced the much larger amounts of BTEXs during seven times sequential experiments.
Keywords: Catalytic co-pyrolysis; Yellow poplar wood; Polyethylene terephthalate; Calcium oxide; Zeolites (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919309481
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:1706-1718
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.088
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().