EconPapers    
Economics at your fingertips  
 

Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining

Xuebing Zhao and Dehua Liu

Applied Energy, 2019, vol. 250, issue C, 229-244

Abstract: The economic feasibility of cellulosic ethanol is still poorer than that of grain-based ethanol because of the difficulty in lignocellulose saccharification and more complicated production process. Pretreatment greatly affects the production cost of cellulosic ethanol. In this work, Formiline pretreatment based on formic acid delignification was used to achieve a fractionation of wheat straw for co-producing ethanol, furfural and high-purity lignin. Techno-economic assessment was performed and compared with that of dilute acid-based process. For a plant with a capacity of ∼ 30,000 tonnes of ethanol/year, Formiline process required a total amount of wheat straw of 201,992 dry tonnes/year with a total capital investment of 176 MM USDs (in 2016), being 40% higher than that of dilute acid process. The total production cost was estimated to be 1,636 USDs/tonne of ethanol when no by-product credits were considered, being 42.2% higher than that of dilute acid process. However, since high value-added products such as furfural and high-purity lignin were co-produced, the production cost of ethanol with consideration of the by-product profits was significantly reduced to 196 USDs/tonne. Formiline process thus could achieve a positive value-added increase (+99 USDs/tonne of wheat straw) for wheat straw conversion; however, dilute acid process had a negative value-added increase (-68 USDs/tonne of wheat straw) if only ethanol was produced. The obtained results indicate that the production cost can be well reduced by increasing substrate-to-product conversion, reducing cellulase loading and decreasing energy consumption for solvent recovery; however, co-production of multi-products provides an promising way to increase the potential revenue.

Keywords: Cellulosic ethanol; Techno-economic assessment; Pretreatment; Biorefining; Multi-product co-production; Energy consumption (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308943
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:229-244

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.05.045

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:229-244