Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China
Zhaojian Huang,
Thushini Mendis and
Shen Xu
Applied Energy, 2019, vol. 250, issue C, 283-291
Abstract:
This study presents a novel approach to detect the city-wide solar potential which utilizes image segmentation with deep learning technology unlike traditional methods. In order to study the solar energy potential in the urban scale, there exists a requirement to quantify the roof area of buildings which are available to receive solar radiation, calculate the total solar radiation obtained within the region based on the meteorological conditions, and determine the total solar energy potential with carbon emissions savings and the economic recovery period. However, obtaining the overall roof area of a city is an existing difficulty when considering the quantification of solar potential in the urban scale. This study utilizes the U-Net of deep learning technology, and a large range of satellite maps to identify the building roof, in order to estimate the city's solar potential. This research established that the urban roofs of Wuhan have an annual photovoltaic electricity generation potential of 17292.30 × 106 kWh/year.
Keywords: Deep learning; Neural networks; Solar energy; Urban energy; Solar potential mapping (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919307780
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:283-291
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.04.113
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().