EconPapers    
Economics at your fingertips  
 

Modeling and onboard test of an electromagnetic energy harvester for railway cars

Yu Pan, Fengwei Liu, Ruijin Jiang, Zhiwen Tu and Lei Zuo

Applied Energy, 2019, vol. 250, issue C, 568-581

Abstract: To enable the smart technologies on the freight railcars, such as the global positioning system (GPS), real-time train condition monitoring and positive train control, a cost-effective power source is required. This paper presents the design, modeling, in-lab and onboard field-tests of an electromagnetic energy harvester for freight railcars. The proposed harvester with a mechanical motion rectification (MMR) mechanism can scavenge the vibration energy that is usually dissipated or wasted. An analytical model considering the train-harvester interaction is established to analyze the dynamic characteristic and predict the performance of the harvesters on different tracks at various train speeds. An in-lab bench test is carried out to experimentally validate the harvester model and evaluate the characteristics of the proposed energy harvester. The experimental results show that an average power of 14.5 W and 9.2 W are achieved respectively for the harvester using 66:1 and 43:1 gearhead under typical suspension vibrations recorded on an operational railcar at 90 km/h. An onboard field test is also performed using the harvester with 43:1 gearhead on a test track, which yields a peak phase power of 73.2 W and an average power of 1.3 W at 30 km/h. Both the in-lab and onboard test results indicate that the proposed energy harvester could continuously generate an amount of power useful for the implementation of smart technologies to improve the operational safety on the freight cars.

Keywords: Railcar suspension; Energy harvesting; Mechanical motion rectification; Onboard test (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308438
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:568-581

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.182

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:568-581