Performance characteristics of a passive direct ethylene glycol fuel cell with hydrogen peroxide as oxidant
Zhefei Pan,
Yanding Bi and
Liang An
Applied Energy, 2019, vol. 250, issue C, 846-854
Abstract:
A passive direct ethylene glycol fuel cell is proposed and tested, which does not contain external liquid pumps, gas blowers/compressors or any other auxiliary devices. Therefore, comparing to the active fuel cells, the volumetric energy density is improved. In this work, ethylene glycol in alkaline solution is employed as fuel in this fuel cell, while hydrogen peroxide in acid solution is employed as oxidant, and a cation exchange membrane is employed to transport cations. The theoretical voltage of this type of fuel cell is as high as 2.47 V, which exhibits a promising potential in practical applications. The operating conditions can influence the performance of this fuel cell system, including species concentrations in both fuel and oxidant, thicknesses of membranes, and operating temperatures. In addition, the open-circuit voltage and the peak power density of this fuel cell are as high as 1.58 V and 65.8 mW cm−2 at 60 °C, respectively. Comparing to a fuel cell system with a similar setting but using oxygen as oxidant, the higher voltage output and power output are attributed to the easier and faster reduction reaction of hydrogen peroxide, which makes contributions to the impressive performance improvement of this fuel cell. Moreover, the effect of the released heat caused by the hydrogen peroxide self-decomposition to the cell performance is studied as well.
Keywords: Passive fuel cells; Direct ethylene glycol fuel cell; Hydrogen peroxide; Operating parameters; Power density; Hydrogen peroxide self-decomposition (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919309250
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:846-854
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.072
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().