Structural transition range of methane-ethane gas hydrates during decomposition below ice point
Jin-Rong Zhong,
Yi-Fei Sun,
Wen-Zhi Li,
Yan Xie,
Guang-Jin Chen,
Chang-Yu Sun,
Lan-Ying Yang,
Hui-Bo Qin,
Wei-Xin Pang and
Qing-Ping Li
Applied Energy, 2019, vol. 250, issue C, 873-881
Abstract:
The structural transition of methane-ethane gas hydrates is generally observed during the forming process; however, it has seldom been reported during the dissociation process. Study on the dissociation behavior of methane-ethane hydrate below ice point has important implications on gas storage and transportation. It was also be helpful for the natural gas hydrate production by depressurization in permafrost zones. The dissociation of a series of methane-ethane hydrate samples at atmospheric pressure and temperatures below ice point (272.15–269.15 K) was performed, and the influence of gas composition and temperature on the structural transition was examined using in situ Raman spectroscopy. The hydrate structures were found to transition from structure I to structure II over a methane composition range of 50–68 mol%. The hydrates remained as sI or sII type compounds, and no structural transition occurred during the dissociation when the methane content in methane-ethane gas mixture was decreased to a certain amount (<50 mol%) or increased to a higher value (≥70 mol%). Further investigation showed that the occurrence time of structural transition reduced with an increase in the methane concentration under the same decomposition temperature. Furthermore, hydrate dissociation was retarded upon decreasing the temperature in this temperature range (272.15–269.15 K). The mechanism of the structural transition occurring in gas hydrate decomposition was proposed.
Keywords: Methane-ethane hydrate; Dissociation mechanism; Structural transition; Raman spectra; Kinetics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919309535
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:873-881
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.092
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().