EconPapers    
Economics at your fingertips  
 

Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches

Adam O' Donovan, Paul D. O' Sullivan and Michael D. Murphy

Applied Energy, 2019, vol. 250, issue C, 1010 pages

Abstract: As the cooling energy demand in buildings is set to increase dramatically in the future, the exploitation of passive solutions like natural ventilation could prove vital in reducing the reliance on mechanical systems. Models that can predict air temperature accurately in naturally ventilated mode are key to understanding the potential of natural ventilation now and in the future. This article presents a simulation based case study of a retrofitted nearly zero energy test-bed university building, in naturally ventilated mode only. The study had three aims: (1) calibration and validation of a whole building energy model, (2) a comparative analysis of occupancy schedules and opening control strategies, and (3) a comparison of researcher and practitioner approaches. Results showed the detailed building model was capable of predicting room level air temperature with a low level of error (0.27 °C ≤ RMSE ≤ 1.50 °C) that was well within the limits of existing calibration standards (MBE ±10%, CVRMSE <20%). The comparative analysis highlighted the need to consider occupancy schedules that have a wide range of diversity, and opening control strategies that reflect the manual and automated relationship in natural ventilation systems. The approach comparison highlighted that both practitioner and researcher approaches to simulating both occupancy schedules and opening control strategies showed similar levels of performance for the application considered. The paper also provides recommendations for those modelling air temperatures and thermal comfort in nearly zero energy buildings.

Keywords: Air temperature; Natural ventilation; Calibration; Validation; Occupancy; Dynamic model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919307457
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:250:y:2019:i:c:p:991-1010

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.04.082

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:991-1010