Experimental density and an improved Helmholtz-energy-explicit mixture model for (CO2 + CO)
Lorena F.S. Souza,
Stefan Herrig,
Roland Span and
J.P. Martin Trusler
Applied Energy, 2019, vol. 251, issue C, -
Abstract:
This study reports new density measurements of the (CO2 + CO) system at temperatures from (283 to 373) K and pressures up to 48 MPa for four different mixtures, with compositions ranging from (5 to 50) mol% CO. A commercial vibrating-tube densimeter was used to measure the density of each mixture as a function of pressure and temperature. Temperature and pressure were measured with expanded uncertainties (k = 2) of 0.05 K and 0.035 MPa, respectively. The relative combined expanded uncertainty (k = 2) of the density was estimated to be between (0.2 and 1.8) %, with values ≤1% for most state points. The new data significantly expand the pressure and composition ranges of the available density data for the (CO2 + CO) system. Together with recently published vapour-liquid-equilibrium data, the new data enabled the development of an improved Helmholtz-energy-explicit mixture model. The new model is based on the mathematical approach of the GERG-2008 and EOS-CG models with new adjustable parameters. As a result, the new mixture model allows for a significantly more accurate description of the thermodynamic properties of the (CO2 + CO) system than GERG-2008 and EOS-CG. A detailed comparison among our density data, experimental data from the literature and the different mixture models is presented.
Keywords: Density; Carbon dioxide; Carbon monoxide; Carbon capture and storage; Multi-parameter mixture model; Fundamental equation of state; Thermodynamic properties (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310724
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:101
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113398
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().