Model predictive maneuvering control and energy management for all-electric autonomous ships
Ali Haseltalab and
Rudy R. Negenborn
Applied Energy, 2019, vol. 251, issue C, -
Abstract:
Over the last few years, autonomous shipping has been under extensive investigation by the scientific community where the main focus has been on ship maneuvering control and not on the optimal use of energy sources. In this paper, the purpose is to bridge the gap between maneuvering control, energy management, and the control of the Power and Propulsion System (PPS) to improve fuel efficiency and the performance of the vessel. Maneuvering control, energy management, and the control of the PPS are in the literature typically studied independently from one another, while they are closely connected. A generic control methodology based on receding horizon control techniques is proposed for the ship maneuvering control as well as energy management. In the context of this research, Direct Current (DC) all-electric architectures are considered for the PPS where the relationship between the produced power by energy sources and vessel propellers is established by a DC microgrid. The objective of the proposed approach is to ensure the ship mission objectives by guaranteeing efficient power availability, decreasing the trajectory tracking error, and increasing the fuel efficiency. In this regard, for the ship motion control, a Model Predictive Control (MPC) algorithm is proposed which is based on Input–Output Feedback Linearization (IOFL). Through this algorithm, the required power for the ship mission is predicted and then, transferred to the proposed Predictive Energy Management (PEM) algorithm which decides on the optimal split between different on-board energy sources during the mission. As a result, the fuel efficiency and the power system stability can be increased. Several simulations are carried out for the evaluation of the proposed approach. The results suggest that by adopting the proposed approach, the trajectory tracking error decreases and the Specific Fuel Consumption (SFC) efficiency is significantly improved.
Keywords: Autonomous ships; Model predictive control; Energy management; All-electric DC power and propulsion system (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919309705
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:13
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113308
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().