EconPapers    
Economics at your fingertips  
 

Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power

Yubiao Sun, Sam Duniam, Zhiqiang Guan, Hal Gurgenci, Peixin Dong, Jianyong Wang and Kamel Hooman

Applied Energy, 2019, vol. 251, issue C, -

Abstract: Supercritical carbon dioxide (sCO2) based Brayton cycle integrated with concentrated solar power applications is a promising technology to exploit solar energy for electricity production. To reduce the energy cost of this solar power plant, spray-assisted dry cooling technology is developed, which makes electricity more affordable for isolated and arid regions. However, pure dry cooling technology suffers from low efficiency under high ambient conditions and a spray cooling system has been proposed to address this problem. Due to the high cost and great complexity, experimental test of a designed spray cooling system on a natural draft dry cooling tower is never reported. Here a spray cooling system consisted of multiple nozzles was tested on a 20 m high experimental tower. This is, to our knowledge, the world’s first attempt to practice spray enhancement of NDDCT at full scale. It is found that the introduced spray cooling can effectively precool the inlet hot air and consequently reduce the circulating water exit temperature. The promising application of this new technology in solar power plants was firstly revealed by integrating the tower into a 1 MW concentrated solar thermal sCO2 Brayton cycle. As spraying water flowrate increases, cooling tower dissipates more waste heat, lowering the compressor inlet temperature and consequently improving the efficiency of thermal cycle. Power cycle simulations also show that cycle efficiency can be higher than 40.5% at the optimal circulating water flow rate, i.e., 4–5 kg/s, depending on the sCO2 flow rate.

Keywords: Natural draft dry cooling tower; Spray cooling system; Water evaporation; Heat capacity; Solar energy; Concentrated solar power; Supercritical CO2 Brayton cycle (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310025
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:28

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113328

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:251:y:2019:i:c:28