EconPapers    
Economics at your fingertips  
 

Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator

Xuan Kou, Yi Wang, Xiao-Sen Li, Yu Zhang and Zhao-Yang Chen

Applied Energy, 2019, vol. 251, issue C, -

Abstract: Natural gas hydrate, as an unconventional energy resource, has generated considerable research interest. It is generally accepted that depressurization method is the most practical and economically promising way to produce gas from gas hydrate sediments. Rates of hydrate dissociation by depressurization depend on heat transfer rate, and the heat transfer during hydrate dissociation mainly includes heat conduction and heat convection. In this paper the Pilot-Scale Hydrate Simulator (PHS), with an inner volume of 117.8 L, was applied to investigate the influence of heat conduction and heat convection on hydrate dissociation. Different thermal boundary conditions and different flow directions during gas recovery from hydrate reservoir by depressurization were performed in the PHS. In addition, the method of studying the effect of different directions of heat convection by changing well locations was firstly proposed in this paper. It was obtained from experimental results that the hydrate dissociation rate with an isothermal boundary is faster than that with a semi-adiabatic boundary, and heat conduction is the dominant factor in hydrate dissociation by depressurization in the constant pressure stage. The influence of heat convection on hydrate dissociation in the constant pressure stage may not be obvious, but during the depressurizing stage, the opposite direction of fluid flow and heat transfer can promote hydrate reformation, and has effect on fluid flow characteristics inside the reservoir. These findings can provide theoretical references for field tests of exploiting natural gas hydrate.

Keywords: Hydrate dissociation; Heat conduction; Heat convection; Depressurization; Sandy sediment (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310797
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:5

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113405

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:251:y:2019:i:c:5