Rotational and vibrational temperatures in the spark plasma by various discharge energies and strategies
Shuai Huang,
Tie Li,
Zhifei Zhang and
Pengfei Ma
Applied Energy, 2019, vol. 251, issue C, -
Abstract:
Increasing discharge energies and employing advanced discharge strategies have been deemed to be effective methods for improving the ignition processes, especially for diluted or lean combustion. However, so far knowledge on the relevant mechanism is far from adequate. In particular, the effects of the plasma produced between the spark plug electrodes on spark ignition processes need to be further clarified. The plasma temperatures are important as they are closely related to the chemical reaction rate. In this study, the vibrational and rotational temperatures of the discharge plasma are quantitatively evaluated by a time series of spectral measurements with different discharge energies and strategies in air under atmospheric pressure, based on the N2 second positive molecular emission spectra. The vibrational and rotational temperatures show a perfect consistent trend with the release rates of delivered energy to the spark plug gap. This indicates that the two temperatures can be enhanced by the higher energy release rates and can be effectively controlled by different discharge strategies. The vibrational and rotational temperatures measured in this study are in the range of 3700–4300 K and 1400–2600 K, respectively. The temperature differences between the vibrational and rotational temperatures exceed 1600 K, increasing with the energy release rate decreasing. This indicates that the spark discharge plasma is in a state of non-thermal equilibrium with the existence of the discharge energies under the non-flow conditions. These results would be a reference to further develop the advanced discharge strategies and improve the ignition stability.
Keywords: Spark discharge; Emission spectra; Vibrational and rotational temperatures; Discharge energies; Discharge strategies (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310323
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:69
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113358
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().