Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems
Mingzhe Liu,
Ryozo Ooka,
Wonjun Choi and
Shintaro Ikeda
Applied Energy, 2019, vol. 251, issue C, -
Abstract:
In energy distribution systems, thermal energy is usually transferred by a heat carrier fluid via pumps. Improper design and unreasonable control of pumping systems result in inefficient operation which accounts for a significant part of electricity consumption in the industry. The need to save energy has been sharpened the focus on improving energy efficiency in pumping systems. The application of a decentralized pumping system with the variable-frequency drive can be considered a technological improvement that has potential in saving energy compared to the conventional centralized pumping system. In this paper, a reduced-scale experimental apparatus and computational fluid dynamic model are used to investigate the energy saving potential of decentralized and centralized pumping systems. The energy-saving potential of decentralized configuration and two types of centralized configurations are then compared. The results showed that the decentralized pumping system consumes less power than centralized pumping systems under the same conditions. When the flow rate is reduced to 80%, the power consumption of the decentralized configuration decreases by 47% while the consumption for a centralized configuration with constant pressure control decreases by only 19%. The decentralized pumping system can offer higher energy-saving potential under variable flow rate conditions, which is expected to extend to other fluid delivery systems for improving efficiency. Moreover, the computational fluid dynamic simulation results correspond well with experimental results. The maximum discrepancies of the developed model for prediction of gauge pressure and system total pressure loss are 7.2% and 9% respectively, which confirms the accuracy and applicability of this model.
Keywords: Pumping system; Pump control strategy; Energy saving potential; Pressure loss; Computational fluid dynamics (CFD); Equivalent length method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310335
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:87
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113359
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().