Spatially resolved oxygen reaction, water, and temperature distribution: Experimental results as a function of flow field and implications for polymer electrolyte fuel cell operation
Thiago Lopes,
Otavio Beruski,
Amit M. Manthanwar,
Ivan Korkischko,
Reynaldo Pugliesi,
Marco Antonio Stanojev,
Marcos Leandro Garcia Andrade,
Efstratios N. Pistikopoulos,
Joelma Perez,
Fabio Coral Fonseca,
Julio Romano Meneghini and
Anthony R. Kucernak
Applied Energy, 2019, vol. 252, issue C, -
Abstract:
In situ and ex situ spatially-resolved techniques are employed to investigate reactant distribution and its impacts in a polymer electrolyte fuel cell. Temperature distribution data provides further evidence for secondary flows inferred from reactant imaging data, highlighting the contribution of convection in heat as well as reactant distribution. Water build-up from neutron tomography is linked to component degradation, matching the pattern seen in the reactant distribution and thus suggesting that high, non-uniform local current densities shape degradation patterns in fuel cells. The correlations shown between different techniques confirm the use of the versatile reactant imaging technique, which is used to compare commonly used flow field designs. Among serpentine-type designs, the single serpentine is superior in both equivalent current density and reactant distribution, showing large contributions from convective flow. On the other hand, the interdigitated design is shown to produce larger equivalent current densities, while showing a somewhat poorer reactant distribution. Considering the correlations drawn between the techniques, this suggests that the interdigitated design compromises durability in favour of power output. The results highlight how established techniques provide a robust background for the use of a new and flexible imaging technique toward designing advanced flow fields for practical fuel cell applications.
Keywords: Fuel cell; Catalyst layer utilization; Oxygen imaging; Temperature mapping; Neutron tomography (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:252:y:2019:i:c:14
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113421
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().