Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time
P. Tsapekos,
B. Khoshnevisan,
M. Alvarado-Morales,
A. Symeonidis,
P.G. Kougias and
Irini Angelidaki
Applied Energy, 2019, vol. 252, issue C, -
Abstract:
Biogas production from anaerobic digestion of grass was evaluated in this study taking into account two harvesting machines, a Disc-mower and an Excoriator, under diverse operating conditions. In addition, the application of generated biogas either in a Combined Heat and Power (CHP) plant for thermal and electrical energy production or as transportation fuel after upgrading (BGU) process was evaluated. Consequential Life Cycle Assessment (CLCA) with long term marginal data was employed. Lab-scale data as well as those obtained from the ecoinvent database were used to compile life cycle inventory data. The system boundary of the present study covered harvesting operation of grass, baling, transportation of bales, anaerobic digestion, use of digestate on farmlands, and downstream processes for biogas usage. Additionally, the system boundary was expanded to take into account the effect of substituting grass with straw in animal feeds. The results demonstrated that the environmental performance of grass-based biogas plants were highly dependent on selected downstream strategies. Furthermore, it was evident that mono-digestion of grass would not guarantee a long-term sustainable renewable energy system. Based on the results obtained, Excoriator at driving speed of 7.5 km/ha had the best environmental performance in all damage categories, i.e., “Human health”, “Ecosystem quality”, “Climate change”, and “Resources”. CHP had a greater environmental performance than water scrubbing BGU for the downstream strategies taken into account. The results from the sensitivity analysis proved that a specific methane yield lower than 329 mLCH4/gVS cannot ensure the achievement of an eco-friendly energy system from grass-based biogas plants.
Keywords: Grass; Mechanical pretreatment; LCA; Biogas; Bio-methane (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919311419
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:252:y:2019:i:c:39
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113467
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().