EconPapers    
Economics at your fingertips  
 

Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer

M.L. Hosain, J.M. Domínguez, R. Bel Fdhila and K. Kyprianidis

Applied Energy, 2019, vol. 252, issue C, -

Abstract: Smoothed Particle Hydrodynamics (SPH) is a mesh-free particle method that has been widely used over the past decade to model complex flows. The method has mainly been used to investigate problems related to hydrodynamics and maritime engineering, in which heat transfer does not play a key role. In this article, the heat-conduction equation is implemented in the open-source code DualSPHysics, based on the SPH technique, and applied to different study cases, including conduction in still water in a cavity, laminar water flow between two infinite parallel plates and tube bank heat exchanger. The thermal solutions obtained from SPH are benchmarked with the solutions from Finite Volume Method (FVM) and validated using available analytical solutions. DualSPHysics results are in good agreement with FVM and analytical models, and demonstrate the potential of the meshless approach for industrial applications involving heat transfer.

Keywords: Smoothed Particle Hydrodynamics; DualSPHysics; Finite Volume Method; Transient heat transfer; CFD analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919311158
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:252:y:2019:i:c:43

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113441

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:252:y:2019:i:c:43