EconPapers    
Economics at your fingertips  
 

Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities

Danny Müller, Christian Knoll, Georg Gravogl, Werner Artner, Jan M. Welch, Elisabeth Eitenberger, Gernot Friedbacher, Manfred Schreiner, Michael Harasek, Klaudia Hradil, Andreas Werner, Ronald Miletich and Peter Weinberger

Applied Energy, 2019, vol. 253, issue C, -

Abstract: Systematic variation of the dehydration temperature and time enables the preparation of highly reactive magnesium oxide for thermochemical energy storage purposes. The reactivity of the MgO, resulting from varying dehydration conditions has been studied by a comparative approach, including reactive surface area, particle morphology and reactivity towards rehydration. For the rehydration an in-situ powder X-Ray diffraction setup is used, allowing for continuous monitoring of Mg(OH)2 formation. The outcome of this investigation was subsequently applied to MgO from natural magnesites to assess the impact of impurities in the material on rehydration reactivity.

Keywords: Magnesium hydroxide; Magnesium oxide; Reactivity study; Natural magnesite; In-situ X-Ray powder diffraction; Thermochemical energy storage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931236X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:253:y:2019:i:c:11

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113562

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:253:y:2019:i:c:11