EconPapers    
Economics at your fingertips  
 

Stirling engine regenerators: How to attain over 95% regenerator effectiveness with sub-regenerators and thermal mass ratios

Anders S. Nielsen, Brayden T. York and Brendan D. MacDonald

Applied Energy, 2019, vol. 253, issue C, -

Abstract: A combined theoretical and experimental approach is used to determine how to achieve a desired value for the Stirling engine regenerator effectiveness. A discrete one-dimensional heat transfer model is developed to determine which parameters influence the effectiveness of Stirling engine regenerators and quantify how they influence it. The regenerator thermal mass ratio and number of sub-regenerators were found to be the two parameters that influence the regenerator effectiveness, and the use of multiple sub-regenerators is shown to produce a linear temperature distribution within a regenerator, which enables the effectiveness to be increased above 50%. It is shown that increasing the regenerator thermal mass ratio and number of sub-regenerators results in an increase in regenerator effectiveness and a corresponding increase in the Stirling engine efficiency. A minimum of 19 sub-regenerators are required to attain a regenerator effectiveness of 95%. Experiments validated the heat transfer model, and demonstrated that stacking sub-regenerators, such as wire meshes, provides sufficient thermal resistance to generate a temperature distribution throughout the regenerator. This is the first study to determine how Stirling engine designers can attain a desired value for the regenerator effectiveness and/or a desired value for the Stirling engine efficiency by selecting appropriate values of regenerator thermal mass ratio and number of sub-regenerators.

Keywords: Stirling engine; Regenerator; Efficiency; Effectiveness; Heat transfer; Sub-regenerators (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919312310
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:253:y:2019:i:c:4

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113557

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:253:y:2019:i:c:4