An integrated data-driven framework for urban energy use modeling (UEUM)
Narjes Abbasabadi,
Mehdi Ashayeri,
Rahman Azari,
Brent Stephens and
Mohammad Heidarinejad
Applied Energy, 2019, vol. 253, issue C, -
Abstract:
Many urban energy use modeling tools and methods have been developed to understand energy use in cities, but often have limitations in aggregating across multiple scales and end-uses, which adversely affects accuracy and utility. Increased data availability and developments in machine learning (ML) provide new possibilities for improving the accuracy and complexity of urban energy use models. This paper presents an integrated framework for urban energy use modeling (UEUM) that localizes energy performance data, considers urban socio-spatial context, and captures both urban building operational and transportation energy use through a bottom-up data-driven approach. The framework employs ML techniques for building operational energy use modeling at the urban scale with a travel demand model for transport energy use prediction. The framework is demonstrated using Chicago as a case study because it has significant variations in urban spatial patterns across its neighborhoods and it provides publicly available data that are essential for the framework. Results for Chicago suggest that, among the tested algorithms, k-nearest neighbor shows the best overall performance in terms of accuracy for a single-output model (i.e., for building or transportation energy use separately) and artificial neural network algorithm is the most accurate for the integrated model (i.e., building and transportation energy use combined). Exploratory analysis demonstrates that the urban attributes examined herein explain 41% and 96% of the variance in building and transportation energy use intensity, respectively. The UEUM framework has the potential to aid designers, planners, and policymakers in predicting urban energy use and evaluating robust theories and alternative scenarios for energy-driven planning and design.
Keywords: Urban energy use modeling; Data-driven; Building operational energy; Transportation energy; Urban socio-spatial patterns; Machine learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919312243
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:253:y:2019:i:c:53
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113550
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().