EconPapers    
Economics at your fingertips  
 

Optimization of a hybrid energy plant by integrating the cumulative energy demand

Hilal Bahlawan, Mirko Morini, Michele Pinelli, Witold-Roger Poganietz, Pier Ruggero Spina and Mauro Venturini

Applied Energy, 2019, vol. 253, issue C, -

Abstract: This paper deals with the optimal design of a hybrid energy plant, which can include the following energy systems: solar thermal collector, photovoltaic panel, hybrid photovoltaic/thermal solar system, combined heat and power system, organic Rankine cycle, absorption chiller, air source heat pump, ground source heat pump and thermal energy storage. Three different configurations are analyzed. In the first configuration, the abovementioned systems are considered with the exception of the hybrid photovoltaic/thermal solar system and organic Rankine cycle. In the second configuration, a hybrid photovoltaic/thermal solar system is also included and in the third configuration the use of an organic Rankine cycle as the bottoming cycle of the combined heat and power system is evaluated. The optimization goal is to minimize the primary energy demanded throughout the manufacturing and operation phase of the hybrid energy plant. The challenge of non-linear life cycle inventory scaling of energy systems is also addressed. A tower located in northern Italy is selected as a case study and two different approaches are evaluated. The first approach consists of solving the sizing optimization by minimizing primary energy consumption only during the operation phase, while in the second approach primary energy consumption is minimized throughout the life cycle of the plant by integrating the life cycle assessment into the optimization process. The results show that, if life cycle assessment is integrated, the optimal sizes of plant components are different and the primary energy saving throughout the life cycle is always higher. With reference to the LCA integrated approach and compared to the first configuration, the use of a hybrid photovoltaic/thermal solar system instead of separate solar thermal collector and photovoltaic panels is more efficient and may allow a primary energy saving of about 4%. Furthermore, compared to a conventional plant, the primary energy saving achievable with the first configuration is approximately 14%, while the primary energy saving increases to about 17% for the second and third configurations.

Keywords: Hybrid energy plant; Genetic algorithm optimization; Life cycle assessment; Primary energy saving (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919311584
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:253:y:2019:i:c:67

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113484

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:253:y:2019:i:c:67