EconPapers    
Economics at your fingertips  
 

Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network

Guijun Ma, Yong Zhang, Cheng Cheng, Beitong Zhou, Pengchao Hu and Ye Yuan

Applied Energy, 2019, vol. 253, issue C, -

Abstract: Accurate estimation of the remaining useful life of lithium-ion batteries is critically important for electronic devices. In the existing literature, the widely applied model-based approaches for remaining useful battery life estimation are limited by the complexity of the electrochemical modeling required. In addition, data-driven approaches for remaining useful battery life estimation commonly define unreliable sliding window sizes empirically and the prediction accuracy of these approaches needs to be improved. To address the above issues, use of a hybrid neural network with the false nearest neighbors method is proposed in this paper. First, the false nearest neighbors method is used to calculate the sliding window size required for prediction. Second, a hybrid neural network that combines the advantages of a convolutional neural network with those of long short-term memory is designed for model training and prediction. Remaining useful life prediction experiments for batteries with various rated capacities are performed to verify the effectiveness of the proposed approach, and the results demonstrate that the proposed approach offers wide generality and reduced errors when compared with the other state-of-the-art methods.

Keywords: Remaining useful life estimation; Lithium-ion battery; False nearest neighbors; Convolutional neural network; Long short-term memory (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (54)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313005
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:253:y:2019:i:c:72

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113626

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:253:y:2019:i:c:72