EconPapers    
Economics at your fingertips  
 

Residential load forecasting using wavelet and collaborative representation transforms

Maryam Imani and Hassan Ghassemian

Applied Energy, 2019, vol. 253, issue C, -

Abstract: Short-term household-level load forecasting requires to acquire knowledge about lifestyle and consumption patterns of residents. A new forecasting framework is proposed in this work which uses the extra appliance measurements in meter-level for short-term electrical load forecasting. The long short-term memory network as a deep learning method is used as a predictor where useful features are fed to it for forecast learning. A lagged load variable vector is assigned to each point of the load curve. To remove redundant details and to use the approximate component of the feature vector, the wavelet decomposition is applied to it. In addition, a new version of collaborative representation is introduced and used to achieve information of the neighboring points (previous and future time instances) of the considered load point. Collaborative representation of the feature vector associated with each load point contains valuable local information about adjacent load points. The load features extracted from the lagged load variable vector provide superior forecasting performance especially with extra appliances load data.

Keywords: Load forecasting; Long short-term memory; Collaborative representation; Wavelet transform (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919311791
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:253:y:2019:i:c:86

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113505

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:253:y:2019:i:c:86