EconPapers    
Economics at your fingertips  
 

Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques

Yuren Zhou, Clement Lork, Wen-Tai Li, Chau Yuen and Yeong Ming Keow

Applied Energy, 2019, vol. 253, issue C, -

Abstract: Air conditioning (AC) accounts for a critical portion of the global energy consumption. To improve its energy performance, it is important to fairly benchmark its energy performance and provide the evaluation feedback to users. However, this task has not been well tackled in the residential sector. In this paper, we propose a data-driven approach to fairly benchmark the AC energy performance of residential rooms. First, regression model is built for each benchmarked room so that its power consumption can be predicted given different weather conditions and AC settings. Then, all the rooms are clustered based on their areas and usual AC temperature set points. Lastly, within each cluster, rooms are benchmarked based on their predicted power consumption under uniform weather conditions and AC settings. A real-world case study was conducted with data collected from 44 residential rooms. Results show that the constructed regression models have an average prediction accuracy of 85.1% in cross-validation tests, and support vector regression with Gaussian kernel is the overall most suitable model structure for building the regression model. In the clustering step, 44 rooms are successfully clustered into seven clusters. By comparing the benchmarking scores generated by the proposed approach with two sets of scores computed from historical power consumption data, we demonstrate that the proposed approach is able to eliminate the influences of room areas, weather conditions, and AC settings on the benchmarking results. Therefore, the proposed benchmarking approach is valid and fair. As a by-product, the approach is also shown to be useful to investigate how room areas, weather conditions, and AC settings affect the AC power consumption of rooms in real life.

Keywords: Energy performance benchmarking; Air conditioning; Data-driven approach; Machine learning; Predictive model; Clustering (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931222X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:253:y:2019:i:c:9

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113548

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:253:y:2019:i:c:9