EconPapers    
Economics at your fingertips  
 

Operational reliability of multi-energy customers considering service-based self-scheduling

Sheng Wang, Changzheng Shao, Yi Ding and Jinyue Yan

Applied Energy, 2019, vol. 254, issue C

Abstract: The developments of energy storage and substitution techniques have made it possible for customers to self-schedule their energy consumption behaviors, to better satisfy their demands in response to uncertain supply conditions. The interdependency of multiple energies, the chronological characteristics, and uncertainties in the self-scheduling context bring about additional complexities to secure the reliable energy requirements of multi-energy customers. As a necessary and challenging task, the operational reliability of multi-energy customers is tackled in this paper. Considering that the consumed energies eventually come down to the energy-related services, the self-scheduling of multi-energy customers is implemented from the perspective of specific energy-related services rather than energy carriers. Firstly, an optimal self-scheduling model for multi-energy customers is developed with the consideration of chronological service curtailment, service shifting and possible failures during service shifting. In the optimal self-scheduling model, the costs of service curtailment and shifting are formulated based on the proposed evaluation method. The time-sequential Monte Carlo simulation approach is applied to model the chronological volatilities of multi-energy demands over the entire study period, embedded with a scenario reduction technique to reduce the computational efforts. Taking full account of the possible scenarios, the quantitative reliability indices of the multi-energy customers can be obtained. The results in test cases demonstrate that the expected energy not supplied of the multi-energy customer drops significantly by 56.32% with the self-scheduling strategy. It can be also concluded that, the self-scheduling and its inherent uncertainties do have significant impacts on the operational reliability of the multi-energy customer.

Keywords: Multi-energy customer; Multi-energy flexible service; Self-schedule; Operational reliability; Time-sequential Monte Carlo simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931205X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s030626191931205x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113531

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:254:y:2019:i:c:s030626191931205x