Cycle design and optimization of pressure swing adsorption cycles for pre-combustion CO2 capture
Sai Gokul Subraveti,
Kasturi Nagesh Pai,
Ashwin Kumar Rajagopalan,
Nicholas Stiles Wilkins,
Arvind Rajendran,
Ambalavan Jayaraman and
Gokhan Alptekin
Applied Energy, 2019, vol. 254, issue C
Abstract:
Novel pressure-swing adsorption (PSA) cycles were developed based on patented TDA AMS-19 (activated carbon) adsorbent for pre-combustion CO2 capture in integrated gasification combined cycle (IGCC) power plants. A variety of cycles comprising of counter-current blowdown, pressure equalization, steam purge and light product pressurization steps were designed and simulated using an in-house one dimensional detailed model. Full process optimization studies were performed for all cycles to evaluate their feasibility for pre-combustion CO2 capture. The CO2 purity and recovery Pareto fronts obtained using the multi-objective optimization were used to assess their ability to simultaneously achieve high CO2 purity (>95%) and recovery (>90%). The cycles that achieved the purity-recovery (95–90%) requirements were subjected to energy-productivity optimizations under the constraints of CO2 purity and recovery. Three cycle designs were ranked in terms of lowest energy consumption at 95% CO2 purities and 90% CO2 recoveries. It was found that a 10-step cycle with three pressure equalization steps achieved a minimum energy consumption of 95.7 kWhe/tonne of CO2 captured at a productivity of 3.3 mol CO2 captured/m3 adsorbent/s.
Keywords: Pre-combustion carbon capture; Pressure swing adsorption; Multi-objective optimization; Modeling; Genetic algorithm; Dynamic simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931298X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s030626191931298x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113624
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().