Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis
Cynthia Kusin Okoro-Shekwaga,
Andrew Barry Ross and
Miller Alonso Camargo-Valero
Applied Energy, 2019, vol. 254, issue C
Abstract:
Anaerobic digestion of food waste is usually impacted by high levels of VFAs, resulting in low pH and inhibited methane production from acetate (acetoclastic methanogenesis); however, this could be harnessed for improving methane production via hydrogenotrophic methanogenesis (biomethanation). In this study, batch anaerobic digestion of food waste was conducted to enhance biomethanation by supplying hydrogen gas (H2), using a gas mixture of 5%-H2 and 95%-N2. The addition of H2 influenced a temporal microbial shift in substrate utilisation from dissolved organic nutrients to H2 and CO2 and was perceived to have enhanced the hydrogenotrophic methanogenic activity. As a result, with the release of hydrogen as degradation progressed (secondary fermentation) hydrogenotrophic methanogenesis was further enriched. This resulted in an enhancement of the upgrading of the biogas, with a 12.1% increase in biomethane (from 417.6 to 468.3 NmL-CH4/gVSadded) and 38.9% reduction in CO2 (from 227.1 to 138.7 NmL-CO2/gVSadded). Furthermore, the availability of hydrogen gas at the start of the process promoted faster propionate degradation, by the enhanced activity of the H2-utilisers, thereby, reducing likely propionate-induced inhibitions. The high level of acidification from VFAs production helped to prevent excessive pH increases from the enhanced hydrogenotrophic methanogenic activity. Therefore, it was found that the addition of hydrogen gas to AD reactors treating food waste showed great potential for enhanced methane yield and biogas upgrade, supported by VFAs-induced pH buffer. This creates the possibility to optimise hydrogenotrophic methanogenesis towards obtaining biogas of the right quality for injection into the gas grid.
Keywords: Biomethanation; Anaerobic digestion; Food waste; Hydrogen injection; Hydrogenotrophic methanogenesis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313169
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313169
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113629
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().