EconPapers    
Economics at your fingertips  
 

Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence

Ashwin Vinod and Arindam Banerjee

Applied Energy, 2019, vol. 254, issue C

Abstract: Tidal turbines are deployed in sites which have elevated levels of free stream turbulence (FST). Accounting for elevated FST on their operation become vital from a design standpoint. Detailed experimental measurements of the dynamic near-wake of a tidal turbine model in elevated FST environments is presented; an active grid turbulence generator developed by our group was used to seed in the elevated FST and evaluate the influence of turbulence intensity (Ti) and inflow integral length scale (L) on the near-wake of the turbine. Three inflow conditions are tested: a quasi-laminar flow with Ti ~ 2.2% and two elevated Ti (~12–14%) cases, one with L ~ 0.4D (D is the turbine diameter) and the other where L ~ D. Elevated Ti cases were found to increase the standard deviation of rotor torque by 4.5 times the value in quasi-laminar flow. Energy recovery was also found to be accelerated; at X/D = 4, the percentage of inflow energy recovered was 37% and was twice the corresponding value in quasi-laminar flow. Elevated FST was observed to disrupt the rotational character of the wake; the drop in swirl number ranged between 12% at X/D = 0.5 and 71% at X/D = 4. Elevated Ti also resulted in L that were considerably larger (>2 times) than the quasi-laminar flow case. An increase in inflow integral length scale (from 0.4D to D) was observed to result in enhanced wake Ti, wake structures and anisotropy; however, no noticeable influence was found on the rate of wake recovery.

Keywords: Free stream turbulence; Turbulence intensity; Integral length scale; Tidal current turbine; Active grid; Near-wake (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313261
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313261

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113639

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313261