Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks
Jichao Hong,
Zhenpo Wang,
Wen Chen and
Yongtao Yao
Applied Energy, 2019, vol. 254, issue C
Abstract:
Voltage, temperature, and state of charge (SOC) are the main characterizing parameters for various battery faults that can cause these parameters’ abnormal fluctuations. Accurate prediction for these parameters is critical for the safe, durable, and reliable operation of battery systems in electric vehicles. This paper investigates a new deep-learning-enabled method to perform accurate synchronous multi-parameter prediction for battery systems using a long short-term memory (LSTM) recurrent neural network. A year-long dataset of an electric taxi was retrieved at the Service and Management Center for electric vehicles (SMC-EV) in Beijing to train the LSTM model and verify the model’s validity and stability. By taking into account the impacts of weather and driver’s behaviors on a battery system’s performance to improve the prediction accuracy, a Weather-Vehicle-Driver analysis method is proposed, and a developed pre-dropout technique is introduced to prevent LSTM from overfitting. Besides, the many-to-many(m-n) model structure using a developed dual-model-cooperation prediction strategy is applied for offline training the LSTM model after all hyperparameters pre-optimized. Additionally, the stability and robustness of this method have been verified through 10-fold cross-validation and comparative analysis of multiple sets of hyperparameters. The results show that the proposed model has powerful and precise online prediction ability for the three target parameters. This paper also provides feasibility for synchronous multiple fault prognosis based on accurate parameter prediction of the battery system. This is the first of its kind to apply LSTM to the synchronous multi-parameter prediction of the battery system.
Keywords: Battery systems; Electric vehicles; Parameter prediction; Long short-term memory; Hyperparameter; Fault prognosis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313352
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313352
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113648
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().