EconPapers    
Economics at your fingertips  
 

Performance of a ten-layer reversible Solid Oxide Cell stack (rSOC) under transient operation for autonomous application

Michael Preininger, Bernhard Stoeckl, Vanja Subotić, Frank Mittmann and Christoph Hochenauer

Applied Energy, 2019, vol. 254, issue C

Abstract: A state-of-the-art ten-layer solid oxide stack was electrochemically characterized and system-oriented experimentally investigated in reversible operation. The stack in question consists of 5YbSZ electrolyte supported planar cells promising high performance. The stack is integrated into a stackbox and is considered to be operated in an autonomous system, thus system-relevant operating conditions in terms of reversibility, inlet mixtures and temperatures were applied. A high fuel utilization, respectively reactant conversion of 80% in either mode was deployed in steady state experiments in a transient operation regime. Polarization curves were dynamically recorded and electrochemical impedance spectroscopy was performed to evaluate the performance of the stack in reversible operation feeding hydrogen and/or carbonaceous gases. Recorded temperature profiles obtained by means of thermocouples placed directly on the air electrodes showed distinct characteristics with a maximum deviation of 24.8 K in the exothermic and 14.9 K in the endothermic operating mode. The stack showed a small dependency on the applied operating temperatures of 780, 800, and 820 °C. A maximum current density of −0.7 A cm−2 was applicable under H2O electrolysis. A comparable performance was observed for co-electrolysis corroborated by current density independent syngas ratios of 9.0 and 4.0 when feeding H2/H2O/CO2-compositions of 20/70/10 and 20/60/20, respectively. Particular attention must be paid to thermal integration in the context of the implementation as a stand-alone system. The resulting operating maps related to maximum current densities, gas production and temperatures can be considered and used for simulation and design of the envisaged stand-alone system including the auxiliary power requirements.

Keywords: Reversible Solid Oxide Cell; Characterization; Electrolyte supported cell; 10 layer stack; EIS; Steady state operation; Transient operation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313820
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313820

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113695

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313820