Compact research for maritime selective catalytic reduction reactor based on response surface methodology
Xingyu Liang,
Bowen Zhao,
Fei Zhang and
Qingling Liu
Applied Energy, 2019, vol. 254, issue C
Abstract:
Selective Catalytic Reduction (SCR) system provides an effective approach to removing NOx emission, in order to meet stringent emission legislation of NOx generated by internal combustion engine. However, the oversize SCR system would increase its operation costs and occupy more space, which restricts its widespread application to a certain extent. Therefore, the compact structure design of SCR system is worthy of research considering the limited installation space. In the present study, one-dimensional SCR model is established, and the effect of structural parameters on the SCR performance has been investigated by AVL BOOST. Then, based on the Response Surface Methodology (RSM), the coupling relationship among these structural parameters is explored. The optimal structural parameter values of SCR are calculated through the coupling relationship function. The SCR volume of the optimal structural parameters is reduced by 23.82% and the pressure drop generated by SCR reactor is reduced by 10.38%, which not only lead to the reduction of fuel consumption and also save the space and energy on ship. Meanwhile, and the NOx conversion is decreased slightly to 0.51%.
Keywords: Combustion characteristic; Emission characteristic; Selective catalytic reduction; Structure optimization; Volume reduction; Response surface methodology; Pressure drop; Fuel consumption (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313893
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313893
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113702
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().