Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle
Boris Brigljević,
Jay J. Liu and
Hankwon Lim
Applied Energy, 2019, vol. 254, issue C
Abstract:
Marine macroalgae or seaweeds are increasingly becoming strong candidates for sustainable biofuel feedstocks of the future. This study features a large-scale process design and comprehensive analysis of an industrial-scale (400,000 tons dry feedstock per year) poly-generation pyrolysis process that utilizes 3rd generation biofuel feedstock, Saccharina japonica brown seaweed, and produces diesel-range hydrocarbon fuel, heat, and power. Process design relied predominately on published experimental data regarding fast pyrolysis of S. japonica in a fixed-bed reactor system, followed by dewatering and catalytic upgrading of the produced biocrude. The design featured acid wash pretreatment for the reduction of mineral content, and subsequently a Rankine power cycle utilizing biochar. The design also considered two distinct cases of on-site hydrogen production and hydrogen purchase. Based on the experimental data, a rigorous steady-state flowsheet model was constructed using Aspen Plus for each design case. The results of comprehensive techno-economic assessment, sensitivity, and Monte Carlo analyses provided insight into capital cost for the process, minimum product selling price, and selling price ranges. Finally, the process is compared with traditional crude oil extraction and processing in terms of significant reductions in CO2 emissions, hence providing strong evidence of its environmental sustainability.
Keywords: Seaweed fast pyrolysis; 3rd generation biofuel; Product selling price range; CO2 reduction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313911
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313911
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113704
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().