EconPapers    
Economics at your fingertips  
 

Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings

M. Krzaczek, J. Florczuk and J. Tejchman

Applied Energy, 2019, vol. 254, issue C

Abstract: Effective and environmentally responsive techniques of energy management in residential buildings are desirable for the resulting reduction of energy costs and consumption. In this paper, an improved and efficient technique of energy management in pipe-embedded wall heating/cooling systems, called the Thermal Barrier, is described. Specifically, the Thermal Barrier is a technique focused on the management and control of heat supply into and heat extraction from external walls containing embedded pipes. The installed pipe-embedded wall heating/cooling system is fully controlled by a special fuzzy logic program that synchronizes the heat supply/extraction with variable heat loads. The main operation rule of the Thermal Barrier is to keep changes of the wall internal energy close to zero for the given reference temperature of a pseudo-surface created by an embedded pipe system of the wall heat exchanger. Comprehensive field measurement results associated with an example Thermal Barrier System installed in a residential two-story house are presented. These measurements confirmed the high-efficiency of the Thermal Barrier and its ability to use low-grade heat sources and sinks to effectively control an indoor climate. The supply water temperature was very low (25.3 °C) in the winter and very high (20.5 °C) in the summer. Daily variations of the indoor air temperature did not exceed 0.8 °C throughout the year. During the summer, the Thermal Barrier System operated in cooling-mode only from a low-grade renewable heat sink. The flexibility of the Thermal Barrier also allows for using heat sources/sinks different from those in the test house.

Keywords: Residential building; Energy management technique; Thermal Barrier; Field measurements; Pipe-embedded structure; Fuzzy logic (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313984
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313984

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113711

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313984