Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design
Rui Lin,
Xiaoyu Diao,
Tiancai Ma,
Shenghao Tang,
Liang Chen and
Dengcheng Liu
Applied Energy, 2019, vol. 254, issue C
Abstract:
The microporous layer of gas diffusion layer plays an important role in water management of polymer exchange membrane fuel cells. Many factors affect the performance of the microporous layer, and these factors are interrelated. In this work, the orthogonal test method is used to study the effects of four factors including hydrophobic agent, the ratio of carbon powder to hydrophobic agent, carbon powder and microporous layer loading. Nine experiments with four factors and three levels are carried out. The effects of these different factors on the microporous layer are studied. The polarization curves and electrochemical impedance spectroscopy of fuel cells are tested and the scanning electron microscopy, contact angle and pore size distribution of MPL are characterized to prove that the conclusions obtained by orthogonal tests are correct and reliable. It is observed that carbon powder, hydrophobic agent and microporous layer loading have significant effects on the performance of fuel cell than that of the ratio of carbon powder to hydrophobic agent. These three factors mainly influence the cells performance by affecting the ohmic resistance and mass transfer resistance. This work provides a reference for the rapid optimization of microporous layer composition and hence improve the water management of the fuel cell.
Keywords: PEMFC; GDL; MPL; Orthogonal test method; Water management (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314011
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314011
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113714
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().