Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things
Ting Tan,
Zhimiao Yan,
Hongxiang Zou,
Kejing Ma,
Fengrui Liu,
Linchuan Zhao,
Zhike Peng and
Wenming Zhang
Applied Energy, 2019, vol. 254, issue C
Abstract:
Natural and human environments are abundant of unused renewable energy such as mechanical energy, acoustic energy, electromagnetic energy, thermal energy, etc. The idea of designing multi-scale metamaterials with super-normal functions on energy manipulation is utilized in multi-field renewable energy harvesting and absorbing. The metamaterials are able to enhance the local energy density by confining and focusing the energy before it to be harvested, leading to remarkable improvement of the output power and conversion efficiency. Leveraging the multi-scale metamaterials for renewable energy harvesting is an emerging direction to exploit the excess energy in the natural and man-made environments. This paper provides a brief overview of the studies published over the past decade on mechanical, acoustic, electromagnetic and thermal energy harvesting using the relevant metamaterials. The goal is to spark the interest of new investigators to this unconventional but fast-evolving branch of energy harvesting that will impact the Internet of things, smart cities and sustainable developments.
Keywords: Energy harvesting; Mechanical metamaterial; Acoustic metamaterial; Microwave rectenna; Optical absorber; Thermal concentrator (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314047
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314047
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113717
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().