EconPapers    
Economics at your fingertips  
 

Ensemble machine learning-based algorithm for electric vehicle user behavior prediction

Yu-Wei Chung, Behnam Khaki, Tianyi Li, Chicheng Chu and Rajit Gadh

Applied Energy, 2019, vol. 254, issue C

Abstract: This research investigates electric vehicle (EV) charging behavior and aims to find the best method for its prediction in order to optimize the EV charging schedule. This paper discusses several commonly used machine learning algorithms to predict charging behavior, including stay duration and energy consumption based on historical charging records. It is noted that prediction error increases along with the rise of data entropy or the decrease of data sparsity. Thus, this paper accounts for both indicators by defining the entropy/sparsity ratio (R). When R is low, support vector regression (SVR) and random forest (RF) regression show better accuracy for stay duration and energy consumption predictions, respectively. While R is high, a diffusion-based kernel density estimator (DKDE) performs better for both predictions. The three methods are assembled as the proposed Ensemble Predicting Algorithm (EPA) to improve predicting performance by decreasing 11% of the duration and 22% of the energy consumption prediction errors. The prediction results are then applied to an optimal EV charging scheduling algorithm to minimize load variance while reducing the EV charging cost. A numerical simulation using real charging data is conducted to show the effectiveness of improved predictions and EV load management. The results show that the charging scheduling combined with EPA prediction can reduce 27% of peak load, 10% of load variation, and 4% cost reduction, compared to uncoordinated charging.

Keywords: Data entropy; Data sparsity; EV user behavior prediction; Kernel density estimator; Machcine learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314199
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314199

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113732

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-05
Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314199