Integrated design of working fluid and organic Rankine cycle utilizing transient exhaust gases of heavy-duty vehicles
Johannes Schilling,
Katharina Eichler,
Benedikt Kölsch,
Stefan Pischinger and
André Bardow
Applied Energy, 2019, vol. 255, issue C
Abstract:
Heavy-duty vehicles waste a major part of their fuel energy in the exhaust gas. To recover energy from the exhaust gas, Organic Rankine Cycles are a promising technology. However, both, the Organic Rankine Cycle and its working fluid have to be tailored to the transient energy input by the exhaust gas. For this purpose, we developed the so-called 1-stage Continuous-Molecular Targeting - Computer-aided Molecular Design (1-stage CoMT-CAMD) method. 1-stage CoMT-CAMD integrates the design of novel working fluids as degree of freedom into the process optimization. However, so far, 1-stage CoMT-CAMD is limited to a nominal operating point. In this work, we enable the integrated design for transient heat sources by combining 1-stage CoMT-CAMD with aggregation techniques. Aggregation techniques allow us to represent the many operating points due to the transient heat source by a few aggregated operating points serving as input for the integrated design. A subsequent assessment of the identified working fluids ensures safety and environmental friendliness. The resulting algorithm is applied to the design of an Organic Rankine Cycle on heavy-duty vehicles using the VECTO long haul cycle to characterize the transient exhaust gas. For this case study, 6 aggregated operating points are sufficient to represent the transient exhaust gas accurately. The optimal identified working fluid is ethyl formate and increases the net power output by 30% compared to the commonly used working fluid ethanol.
Keywords: Integrated process and fluid design; Computer-aided molecular design; PC-SAFT; Aggregation technique; CoMT-CAMD (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919308645
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:255:y:2019:i:c:s0306261919308645
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.05.010
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().