Reactivity of novel high-performance fuels on commercial three-way catalysts for control of emissions from spark-ignition engines
Sreshtha Sinha Majumdar,
Josh A. Pihl and
Todd J. Toops
Applied Energy, 2019, vol. 255, issue C
Abstract:
The Department of Energy “Co-Optimization of Fuels and Engines” initiative aims to simultaneously develop novel high-performance fuels with advanced engine designs to reduce petroleum consumption. To achieve commercialization, advanced engines running on alternative fuels still must meet emissions regulations. Warm three-way catalysts (TWC) are very effective at meeting the stringent emissions regulations on pollutants such as nitrogen oxides (NOx), non-methane organic gases (NMOG) and carbon monoxide (CO) from gasoline-fueled spark-ignition (SI) engines operating under stoichiometric conditions; thus, most SI engine emissions occur during cold-start, when the TWC has not yet achieved light-off. In the current study, the light-off behavior of novel high-performance fuel candidates has been investigated on a hydrothermally-aged commercial TWC using a synthetic engine-exhaust flow reactor system according to industry guidelines. Over 30 potential fuel components were examined in this study, including alkanes, alkenes, alcohols, ketones, esters, aromatic ethers, and non-oxygenated aromatic hydrocarbons. Short-chain acyclic oxygenates, including alcohols, ketones, and esters, tended to light off at relatively low temperatures, while alkenes, aromatics, and cyclic oxygenates tended to light off at relatively high temperatures. The light-off behavior of alkanes and alkenes depended strongly on their size and structure. In terms of the influence on CO light-off on the TWC, the fuels fell into two distinct categories: (i) non-inhibiting species including C2-C3 alcohols, alkanes, acyclic ketones, and esters; and (ii) inhibiting species including alkenes, aromatic hydrocarbons, cyclic oxygenates, and C4 alcohols.
Keywords: Light-off; Three-way catalyst; Cold start; Biofuel; Hydrocarbon oxidation (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919313273
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:255:y:2019:i:c:s0306261919313273
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113640
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().